Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report what we believe to be a novel and unique approach for achieving high-performance and broadband THz phase shifting based on spatially-resolved photoconductivity modulation (SRPM). By changing the illumination area on a hybrid Au-Ge mesa-array (AGMA) structure in front of an indium tin oxide (ITO) layer for local photoconductivity modulation, the phase difference between the incident- and reflected-waves can be tuned nearly continuously with extremely low reflection loss. For a prototype demonstration, a photonically-driven THz phase shifting device based on the WR-5.1 (140-220 GHz) waveguide configuration was designed, modeled and simulated. To achieve phase tuning in the range of 0° to -180° at 180 GHz (band center frequency), a mesa-array consisting of 12 × 6 unit cells (each 105 μm × 105 μm) was designed, and a distancedof 250 μm between the AGMA and ITO was used. The SRPM is accomplished using computer-generated light patterns from a closely-coupled micro-LED array for through-ITO illumination, without the need for any biasing circuitry. Full wave simulation results have shown that pseudo-continuous and broadband phase shifting can be achieved in the entire WR-5.1 band, and a shifting range of 0° to -180° at 180 GHz can be realized as designed. In addition, by using light patterns of different combinations of vertical strips, a fine phase tuning step as small as ∼0.05° can be demonstrated. For all phase tuning states, the simulated reflection loss is generally less than 1 dB with low loss variation. The proposed technology for high-performance THz phase modulation is promising and powerful, while offering far more design flexibility and frequency scalability than the current state-of-the-art since it requires no biasing wires thus eliminating parasitic-related performance degradation. Therefore, this technology is suitable for the development of large-scale THz phased-arrays, reconfigurable reflectarrays, and tunable metasurfaces for dynamic beam steering/forming required in next generation (6G or beyond) wireless communications.more » « less
-
The inverse design of meta-optics has received much attention in recent years. In this paper, we propose a GPU-friendly inverse design framework based on improved eigendecomposition-free rigorous diffraction interface theory, which offers up to 16.2 × speedup over the traditional inverse design based on rigorous coupled-wave analysis. We further improve the framework’s flexibility by introducing a hybrid parameterization combining neural-implicit and traditional shape optimization. We demonstrate the effectiveness of our framework through intricate tasks, including the inverse design of reconfigurable free-form meta-atoms.more » « less
-
High-resolution endoscopic optical imaging is a crucial technique in biological imaging to examine the inside organs. There is a trade-off between lateral resolution and depth of focus in such applications. Traditional Optical Coherence Tomography provides an increased depth range but falls short of desired resolution. The combination of both higher resolution and larger imaging depth of focus of metalens can improve the clinical utility of endoscopic optical imaging. In this work, we designed, analyzed, and fabricated a 500 µm diameter metalens operating at 1300 nm to achieve high resolution and large imaging depth of focus, therefore, addressing this need. The full width at half maximum and depth of focus for the proposed metalens are 3.10 and 286 µm, respectively.more » « less
-
null (Ed.)It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance.more » « less
-
For the first time, we are able to generate over 1000 diffraction spots from a graded photonic super-crystal with a unit super-cell size of 12a × 12a where a is the lattice constant and hole radii are gradually changed in dual directions. The diffraction pattern from the graded photonic super-crystal reveals unique diffraction properties. The first order diffractions of (±1,0) or (0,±1) disappear. Fractional diffraction orders are observed in the diffraction pattern inside a square with vertices of (1,1), (1,−1), (−1,−1) and (−1,−1). The fractional diffraction can be understood from lattices with a period of a. However, a dual-lattice model is considered in order to explain higher-order diffractions. E-field intensity simulations show a coupling and re-distribution among fractional orders of Bloch waves. There are a total of 12 × 12 spots in E-field intensity in the unit supercell corresponding to 12 × 12 fractional diffraction orders in the diffraction pattern and 12 × 12 fractional orders of momentum in the first Brillouin zone in k-space.more » « less
An official website of the United States government

Full Text Available